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what it is
Dirac invented a vector notation for quantum states which is used everywhere by physicists.

Xa H b\
In quantum jargon, a and b are “states” (e.g. a place that a particle can be), while H  is an “operator” (which does
something  to  the  particle,  like  bounce  a  photon  off  it).   This  expression  represents  a  number,  namely  the
probability of starting in state b, getting hit by  H , and ending up at a. 

But none of those details really matter for this discussion.

What  matters  is  here  this  is  notation for  doing linear  algebra.  Once you have an N-dimensional  basis  in  mind,
this turns into just a H1 x NL ◊ HN x NL ◊ HN x 1L matrix multiplication where a is a column vector, b is a row vector,
and  H  is a square matrix.

H a1 a2 … L
H11 H12 …
H21 H22 …
… … …

b1
b2
…

Xa  is called a “bra”, and b\ is called a “ket”. (This was Dirac’s idea of a joke.)

This  notation  can  be  great  for  some  sorts  of  linear  algebra  manipulations  -  change  of  basis,   finding  the
coordinates of a vector in a given basis, using projection operators - stuff like that.  

Let’s start with a simple example, and convert it into this notation.

2D dot product 

a”

b
”



ü traditional notation

In traditional notation, we’d write the dot product of the two vectors above as

a
”
◊ b

”
And if we have an orthnormal basis èi lying around, with dot products

e`i ◊ e`j = dij

then we’d write

a
”
= a1 e`1 + a2 e`2
b
”
= b1 e`1 + b2 e`2

You may be more used to seeing this written asI ax ı
`

+ ay ‘
`Min the x-y plane. 

Plugging in and simplifying gives 

a
”
◊ b

”
= Ia1 e`1 + a2 e`2M Ib1 e`1 + b2 e`2M
= a1 e`1 ◊ b1 e`1 + a1 e`1 ◊ b2 e`2 + a2 e`2 ◊ b1 e`1 + a2 e`2 ◊ b2 e`2
= a1 b1 + a2 b2

which is how you turn an abstract vector dot product into coordinates that you can actually calculate.

OK, suppose you didn’t know what a1 was, how could you write an expression for it?

I’m glad you asked.  We just take the expression for b
”

 up above, and do a dot product with e`1 on both sides :

e`1 ◊ b
”
= e`1 ◊ Ib1 e`1 + b2 e`2M = b1

ü Dirac notation

Now it’s time to put all this into Dirac’s notation.

The dot product of two vectors is

Xa b\
Our basis vectors are i\with dot products

Xi j\ = dij
But in the next step, instead of writing coordinates like b1, instead we write explicitly X1 b\.

Here’s where it starts to get cool: this notation isn’t just a name for the 1’th component of b  ;  it  actually is  the
1’th component of beta.  

Moving right along with what we did before, we now write

Xa = Xa 1\ X1 + Xa 2\ X2
Xb = Xb 1\ X1 + Xb 2\ X2

However,  before we can now take the dot  product  of  these two and simplify,  we need to  “flip” b  from its  bra
form Xb  to its ket form b\.   Technically in linear algrebra jargon this is “the dual”; essentially we’re just
changing from a column vector to a row vector, so that the matrix multiplication works.  So, flipping the second
line end for end and plugging in gives
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However,  before we can now take the dot  product  of  these two and simplify,  we need to  “flip” b  from its  bra
form Xb  to its ket form b\.   Technically in linear algrebra jargon this is “the dual”; essentially we’re just
changing from a column vector to a row vector, so that the matrix multiplication works.  So, flipping the second
line end for end and plugging in gives

Xa b\ = H Xa 1\ X1 + Xa 2\ X2 L H 1\ X1 b\ + 2\ X2 b\ L
= Xa 1\ X1 1\ X1 b\ + Xa 1\ X1 2\ X2 b\ +

Xa 2\ X1 b\ X2 1\ + Xa 2\ X2 2\ X2 b\
= Xa 1\ X1 b\ + Xa 2\ X2 b\

Before going any further, make sure you see that this is the same the result before : a1 b1 + a2 b2 .

But this time, we aren’t done; we can factor this part on the right to get.

Xa b\ = Xa H 1\ X1 + 2\ X2 L b\
or, since the part in the middle clearly is just some kind of identify multiplication

1 = 1\ X1 + 2\ X2
What the heck is that, I can hear you say.  

Well, it isn’t obvious in traditional notation.

In Dirac notation, you use it all the time to “resolve” a matrix or dot product into a specific basis.
This is exactly where Dirac’s notation comes into its own.  

In terms of concrete things you can visualize easily, and speaking loosely and some incorrectly by writing down
numbers without an explicit basis, you can think of a ket as a column vector and a bra as a row vector.  So in this
e` basis,

1\ = J 1
0

N 2\ = J 0
1

N
X1 = H 1 0L X2 = H 0 1 L

and so »1\X1»  is a (2x1) times (1x2) matrix multiplication, which gives

1\ X1 = J 1 0
0 0

N

2\ X2 = J 0 0
0 1

N
and their sum is the identify matrix.

But there’s also an intuitive notion of what i\Xi  means : it’s a projection operator onto one component of
the basis.

The vertical bars mean that each piece is ready to do a dot product in that direction.  In traditional notation then,
having that act on a vector might be written something like

I ◊ e`1 e`1 ◊M a” = I ◊ e`1 e`1 ◊M Ia1 e`1 + a2 e`2M = e`1 a1

which  is  the  advertised  projection  operator  :  all  parts  of  the  vector  except  in  the  i’th  direction  have  been
removed.

By adding together all the projection operators, you project onto the same space, which is why for any complete
orthonormal base, we get the identity
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which  is  the  advertised  projection  operator  :  all  parts  of  the  vector  except  in  the  i’th  direction  have  been
removed.

By adding together all the projection operators, you project onto the same space, which is why for any complete
orthonormal base, we get the identity

1 = 1\ X1 + 2\ X2 = J 1 0
0 0

N + J 0 0
0 1

N = J 1 0
0 1

N

the Operator 1

By adding together all the projection operators, you project onto the same space, which is why for any complete
orthonormal base, we get the identity

1 = ‚
i

i\ Xi

I  have  no  idea  how  to  write  that  in  traditional  notation.   In  Dirac  notation,  it’s  fundamental.  To  calculate
anything,  you  stick  this  in  all  over  the  place  to  turn  operators  and  abstract  vectors  into  rows,  columns,  and
matrices of numbers in a given a basic, then just turn the numerical crank.

This  formula is  true only for  a  complete,  orthogonal,  unit  length set  of  basis  vectors.   (In quantum mechanics,
that’s pretty much all we care about.)

ü matrix multiplication

I started with an expression like this.  

Xa H
`

b\
In this form we have a number, but can’t calculate it. For that, we need numbers, and to get numbers, we need a
basis.

Inserting the operator 1 at the vertical bars resolves this into components

‚
i

‚
j

Xa i\ Xi H
`

j\ Xj b\

which is the same as

H a1 a2 … L
H11 H12 …
H21 H22 …
… … …

b1
b2
…

This shows explicitly what, say H12  is : it’s  X1 H
`

2\, which is an explicit recipe: let H act on basis vector
2, then dot that with basis vector 1.  Or if it’s more convenient to do that in another basis, you insert the operator
one a few more times and do it that way.

ü change of basis

Suppose now that we have another basis, let’s call it i'\.  How do we calculate the coordinates of our vector
in one basis rather in terms of the other?

Well, by inserting the dirac “operator 1”, it’s just a rote symbol manipulation game :
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Suppose now that we have another basis, let’s call it i'\.  How do we calculate the coordinates of our vector
in one basis rather in terms of the other?

Well, by inserting the dirac “operator 1”, it’s just a rote symbol manipulation game :

Xi' a\ = ‚
i

Xi' i\ Xi a\

That thing in the middle is a matrix of dot products of the basis vectors in the two bases, in all combinations.

Exercise : with an Iı`', ‘
`
'M basis rotated by 30 degrees clockwise from the usual (x,y) coordinates, and a = 2 ı̀ + 1

2
‘̀ ', 

find Iax ', ay 'M by applying the last formula.

ü eigenvalues

Eigens  also  fit  nicely  into  this  notation  system.   Say  you  have  an  operator  A  with  eigenvalues  lk  and
eigenvectors v”k.  Then we can use the projection operators to write that explicitly as 

A = ‚
k

vk\ lk Xvk

Then if you want to know A’s matrix representation in a specific basis, say i\, you’d calculate

Xi A j\ = ‚
k

Xi vk\ lk Xvk j\

which just requires that you know the eigenvectors in that basis; everything else is plug and chug.

example: stretching along x=y
Let’s work a problem using this notation : write down  2x2 matrix that stretches the XY plane by 2 in the x=y
direction, in the standard XY basis.

Start by defining two sets of basis vectors :
x\ and y\ along the X and Y axes 
ne\ and nw\ at 45 degrees to those, along the x = y and x = -y lines.
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nw\
y\

x\

ne\

The dot products between these four vectors are

Xne x\ = 1 í 2

Xne y\ = 1 í 2

Xnw x\ = -1 í 2

Xnw y\ = 1 í 2

Now let S  be the “stretch” operator that we want express as a matrix in the xy basis. From it’s description, we
have

S ne\ = 2 ne\
S nw\ = 1 nw\

or using a, b as indices that can be either ne or nw,

Xa S b\ = J Xne S ne\ Xne S nw\
Xnw S ne\ Xnw S nw\ N = J 2 0

0 1
N

Now let m, n be indices that represent either x or y. Then what we want to find is Xm»S »n\= “the stretch operator
in the XY basis”, by inserting the operator 1 before and after S, expanding, and running the numbers. Dirac’s bra-
ket notation makes this sourt of calculation explicit.

Xm S n\
= ‚

a

‚
b

Xm a\ Xa S b\ Xb n\

= K Xx ne\ Xx nw\
Xy ne\ Xy nw\ O K Xne S ne\ Xne S nw\

Xnw S b\ Xnw S nw\ O K Xne x\ Xne y\
Xnw x\ Xnw y\ O

=
1

2
J 1 -1
1 1

N J 2 0
0 1

N 1

2
J 1 1
-1 1

N

=
1

2
J 3 1
1 3

N

That last result is in fact an example of what’s sometimes called “spectral decomposition”, S = U DU*  where D
is  a  diagonal  matrix  of  of  the  eigenvalues  of  S  ,  and  U  is  a  unitary  matrix  of  the  eigenvectors  of  S,  with
U* =U-1,  since  ne\ and  nw\ are  the  eigenvectors  of  this  stretch  operator,  with  eigenvalues  2  and  1
respectively.
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the continuous limit
These same ideas can be used for some continuous variables, in particular the position x  and momentum — k  in
quantum  mechanics,  where  k  with  units  1/meters  is  the  sinusoidal  Fourier  transform  basis.  The  wavefunction
YHxL can be thought of as the projection of the vector Y\ onto one particular Xx  . In this “continuously infinite”
vector space, the formulas for the bras and kets turn into things like

Xx' x\ = d Hx' - xL
Xk x\ = 1

2 p
„-‰ k x

1 = ‡
-•

+•

x\ Xx ‚x = ‡
-•

+•

k\ ‚ k Xk

and  the  Forier  transform  turning  the  quantum  probability  wavefunction  in  terms  of  position  Y(x)  to  one  in
momentum space fHkL becomes just a change of basis and the application of the operator 1 .

f HkL = Xk Y\ = ‡
-•

+•

Xk x\ Xx Y\ ‚x = ‡
-•

+• 1

2 p
„-‰ k x Y HxL ‚x

But that sort of stuff is a bit beyond beyond the scope of the standard linear algebra course.

The bottom line here is that this bra-ket stuff is ubiquitous in quantum physics. While it  may look a bit  odd at
first, it’s just a linear algebra notation - one that has a nice intuition and some real power.

references
You’re  quickest  bet  to  find  the  details  is  to  just  google  “bra  ket”;  however,  many  of  them  spit  out  a  lot  of
quantum jargon. Here are a few that discuss the notation itself.

* http://rjlipton.wordpress.com/2010/11/30/notation-and-thinking/

* http://www.conservapedia.com/Bra-ket_notation

setup and notes
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